首页> 外文OA文献 >Particle swarm optimization with composite particles in dynamic environments.
【2h】

Particle swarm optimization with composite particles in dynamic environments.

机译:在动态环境中使用复合粒子对粒子群进行优化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a “worst first” principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.
机译:近年来,人们对动态环境中的粒子群优化(PSO)研究越来越感兴趣。本文提出了一种新的PSO模型,称为带有复合粒子的PSO(PSO-CP),用于解决动态优化问题。 PSO-CP使用“最坏优先”原理,根据相似性将群分为一组复合粒子。受物理学中复合粒子现象的启发,每个复合粒子中的基本成员通过速度各向异性反射方案进行交互,以整合有价值的信息,从而有效并快速地在搜索空间中找到有希望的最佳状态。每个复合粒子通过散射算子维持多样性。此外,引入了整体运动策略以促进群体多样性。在典型的动态测试基准问题上进行的实验为设置相关参数提供了指导,并表明与用于动态优化问题的几种最新PSO算法相比,PSO-CP是有效的。

著录项

  • 作者

    Yang, Shengxiang;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号